Compact integration factor methods for complex domains and adaptive mesh refinement
نویسندگان
چکیده
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
منابع مشابه
Compact upwind schemes on adaptive octrees
Compact high-order upwind schemes using reconstruction from cell-averages are derived for application with the compressible three-dimensional Navier-Stokes equations. An adaptive-octree mesh, combined with the Adams-BashforthMoulton family of predictor-corrector schemes, provides a conservative highorder time-integration platform supporting localized h-refinement and timestep sub-cycling. Numer...
متن کاملA fourth-order approximate projection method for the incompressible Navier-Stokes equations on locally-refined periodic domains
In this follow-up of our previous work [Zhang et. al., A fourth-order accurate finitevolume method with structured adaptive mesh refinement for solving the advectiondiffusion equation, SIAM J. Sci. Comput. 34 (2012) B179-B201], the author proposes a high-order semi-implicit method for numerically solving the incompressible NavierStokes equations on locally-refined periodic domains. Fourth-order...
متن کاملRecent Advances in Schwarz Waveform Moving Mesh Methods – A New Moving Subdomain Method
It is well accepted that the efficient solution of complex partial differential equations (PDEs) often requires methods which are adaptive in both space and time. In this paper we are interested in a class of spatially adaptive moving mesh (r-refinement) methods introduced in [9, 10, 12]. Our purpose is to introduce and explore a natural coupling of domain decomposition, Schwarz waveform relaxa...
متن کاملFast Finite Element Method Using Multi-Step Mesh Process
This paper introduces a new method for accelerating current sluggish FEM and improving memory demand in FEM problems with high node resolution or bulky structures. Like most of the numerical methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix equation into several smaller size matrices, the solving procedure can be accelerated. For implementing ...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational physics
دوره 229 16 شماره
صفحات -
تاریخ انتشار 2010